|
In numerical analysis Gauss–Laguerre quadrature is an extension of the Gaussian quadrature method for approximating the value of integrals of the following kind: : In this case : where ''x''''i'' is the ''i''-th root of Laguerre polynomial ''L''''n''(''x'') and the weight ''w''''i'' is given by 〔Equation 25.4.45 in 10th reprint with corrections.〕 : ==For more general functions== To integrate the function we apply the following transformation : where . For the last integral one then uses Gauss-Laguerre quadrature. Note, that while this approach works from an analytical perspective, it is not always numerically stable. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Gauss–Laguerre quadrature」の詳細全文を読む スポンサード リンク
|